Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352526

RESUMO

Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary: Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.

2.
Science ; 382(6666): 59-63, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797028

RESUMO

Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens. We also describe how integrating herbarium genomics data with other data types can yield substantial insights into the evolutionary and ecological processes that shape plant communities. Herbarium genomic analysis is a tool for understanding plant life and informing conservation efforts in the face of dire environmental challenges.


Assuntos
Coleções como Assunto , DNA Antigo , Plantas , Genômica , Plantas/genética , Conservação dos Recursos Naturais , Evolução Biológica , Adaptação Biológica/genética , Fenótipo
3.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040332

RESUMO

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Assuntos
Pandemias , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Genômica , Fungos
4.
Cell Rep ; 42(1): 112029, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689329

RESUMO

Transposons are mobile elements that are commonly silenced to protect eukaryotic genome integrity. In plants, transposable element (TE)-derived inverted repeats (IRs) are commonly found near genes, where they affect host gene expression. However, the molecular mechanisms of such regulation are unclear in most cases. Expression of these IRs is associated with production of 24-nt small RNAs, methylation of the IRs, and drastic changes in local 3D chromatin organization. Notably, many of these IRs differ between Arabidopsis thaliana accessions, causing variation in short-range chromatin interactions and gene expression. CRISPR-Cas9-mediated disruption of two IRs leads to a switch in genome topology and gene expression with phenotypic consequences. Our data show that insertion of an IR near a gene provides an anchor point for chromatin interactions that profoundly impact the activity of neighboring loci. This turns IRs into powerful evolutionary agents that can contribute to rapid adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Cromatina/genética , RNA , Proteínas de Arabidopsis/genética , Metilação , Elementos de DNA Transponíveis/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas
5.
Science ; 378(6624): 1079-1085, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480621

RESUMO

North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.


Assuntos
Adaptação Fisiológica , Amaranthus , Efeitos Antropogênicos , Fazendas , Plantas Daninhas , Humanos , América do Norte , Plantas Daninhas/genética , Plantas Daninhas/fisiologia , Amaranthus/genética , Amaranthus/fisiologia , Adaptação Fisiológica/genética , Seleção Genética , Variação Genética
6.
Mol Biol Evol ; 38(12): 5328-5344, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499163

RESUMO

Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.


Assuntos
Arabidopsis , África , Alelos , Arabidopsis/genética , Ásia , Europa (Continente) , Variação Genética , Genética Populacional , Haplótipos , América do Norte , Filogenia
7.
PLoS Genet ; 17(2): e1009386, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591993

RESUMO

Supernumerary mini-chromosomes-a unique type of genomic structural variation-have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Rearranjo Gênico/genética , Genoma Fúngico/genética , Genômica/métodos , Ascomicetos/patogenicidade , Eleusine/genética , Eleusine/microbiologia , Evolução Molecular , Genes Fúngicos/genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Milhetes/genética , Milhetes/microbiologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética
8.
Curr Protoc Plant Biol ; 5(4): e20121, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211414

RESUMO

The ability to sequence DNA retrieved from ancient and historical material plays a crucial role in reinforcing evolutionary and anthropological inference. While the focus of the field is largely on analyzing DNA from ancient hominids and other animals, we have also learned from plant ancient DNA (aDNA), in particular, about human farming practices, crop domestication, environment management, species invasion, and adaptation to various environmental conditions. In the following protocols, we outline best practices for plant aDNA isolation, preparation for sequencing, bioinformatic processing, and authentication. We describe the process all the way from processing of archaeological or historical plant material to characterizing and authenticating sequencing reads. In alternative protocols, we include modifications to this process that are tailored to strongly degraded DNA. Throughout, we stress the importance of precautionary measures to successfully analyze aDNA. Finally, we discuss the evolution of the archaeogenomics field and the development of new methods, which both shaped this protocol. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of aDNA Alternate Protocol 1: Isolation of ultra-short DNA (Dabney modification) Support Protocol 1: Preparation of PTB-based mix Support Protocol 2: Preparation of binding buffer Basic Protocol 2: Preparation of genomic libraries Alternate Protocol 2: Preparation of genomic libraries with uracil removal Basic Protocol 3: Bioinformatic processing and authentication of aDNA.


Assuntos
DNA Antigo , Animais , Biologia Computacional , DNA de Plantas/genética , Biblioteca Gênica , Humanos , Análise de Sequência de DNA
9.
BMC Biol ; 18(1): 88, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677941

RESUMO

BACKGROUND: Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries. RESULTS: The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages. CONCLUSIONS: Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.


Assuntos
Ascomicetos/genética , Evolução Biológica , Genes Fúngicos/genética , Variação Genética , Doenças das Plantas/microbiologia , Genoma Fúngico
10.
BMC Genomics ; 21(1): 432, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586278

RESUMO

BACKGROUND: The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains. RESULTS: We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin. This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures. Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach. CONCLUSIONS: Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.


Assuntos
Bactérias/classificação , DNA Antigo/análise , Fósseis/microbiologia , Análise de Sequência de DNA/métodos , Uracila/química , Animais , Bactérias/genética , DNA Antigo/química , DNA Bacteriano/genética , Mineração de Dados , Biblioteca Gênica , Metagenômica , Microbiota , Homem de Neandertal/microbiologia , Plantas/microbiologia
11.
Mol Ecol Resour ; 20(5): 1228-1247, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32306514

RESUMO

Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.


Assuntos
DNA de Plantas/genética , Genética Populacional , Genômica , Plantas/genética , Arabidopsis , Cardamine , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
12.
Plant J ; 102(2): 222-229, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31788877

RESUMO

Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Genoma de Planta/genética , Genômica , Plantas/genética , Planeta Terra , Filogenia
13.
Nature ; 574(7778): E16, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570884

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nature ; 573(7772): 126-129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462776

RESUMO

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change1 do not typically take into account how natural selection influences populations differently depending on their genetic makeup2. Here we make use of the extensive genome information that is available for Arabidopsis thaliana and measure how manipulation of the amount of rainfall affected the fitness of 517 natural Arabidopsis lines that were grown in Spain and Germany. This allowed us to directly infer selection along the genome3. Natural selection was particularly strong in the hot-dry location in Spain, where 63% of lines were killed and where natural selection substantially changed the frequency of approximately 5% of all genome-wide variants. A significant portion of this climate-driven natural selection of variants was predictable from signatures of local adaptation (R2 = 29-52%), as genetic variants that were found in geographical areas with climates more similar to the experimental sites were positively selected. Field-validated predictions across the species range indicated that Mediterranean and western Siberian populations-at the edges of the environmental limits of this species-currently experience the strongest climate-driven selection. With more frequent droughts and rising temperatures in Europe4, we forecast an increase in directional natural selection moving northwards from the southern end of Europe, putting many native A. thaliana populations at evolutionary risk.


Assuntos
Aclimatação/genética , Arabidopsis/genética , Mudança Climática/estatística & dados numéricos , Genoma de Planta/genética , Seleção Genética , Arabidopsis/crescimento & desenvolvimento , Secas/estatística & dados numéricos , Aptidão Genética , Mapeamento Geográfico , Alemanha , Aquecimento Global/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Chuva , Reprodutibilidade dos Testes , Sibéria , Espanha
15.
Nat Ecol Evol ; 3(7): 1093-1101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235927

RESUMO

Potato, one of the most important staple crops, originates from the highlands of the equatorial Andes. There, potatoes propagate vegetatively via tubers under short days, constant throughout the year. After their introduction to Europe in the sixteenth century, potatoes adapted to a shorter growing season and to tuber formation under long days. Here, we traced the demographic and adaptive history of potato introduction to Europe. To this end, we sequenced 88 individuals that comprise landraces, modern cultivars and historical herbarium samples, including specimens collected by Darwin during the voyage of the Beagle. Our findings show that European potatoes collected during the period 1650-1750 were closely related to Andean landraces. After their introduction to Europe, potatoes admixed with Chilean genotypes. We identified candidate genes putatively involved in long-day pre-adaptation, and showed that the 1650-1750 European individuals were not long-day adapted through previously described allelic variants of the CYCLING DOF FACTOR1 gene. Such allelic variants were detected in Europe during the nineteenth century. Our study highlights the power of combining contemporary and historical genomes to understand the complex evolutionary history of crop adaptation to new environments.


Assuntos
Solanum tuberosum , Aclimatação , Animais , Cães , Europa (Continente) , Genótipo , Tubérculos
16.
New Phytol ; 221(1): 110-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160314

RESUMO

During the last centuries, humans have transformed global ecosystems. With their temporal dimension, herbaria provide the otherwise scarce long-term data crucial for tracking ecological and evolutionary changes over this period of intense global change. The sheer size of herbaria, together with their increasing digitization and the possibility of sequencing DNA from the preserved plant material, makes them invaluable resources for understanding ecological and evolutionary species' responses to global environmental change. Following the chronology of global change, we highlight how herbaria can inform about long-term effects on plants of at least four of the main drivers of global change: pollution, habitat change, climate change and invasive species. We summarize how herbarium specimens so far have been used in global change research, discuss future opportunities and challenges posed by the nature of these data, and advocate for an intensified use of these 'windows into the past' for global change research and beyond.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental , Espécies Introduzidas , Plantas , Academias e Institutos , Dióxido de Carbono , Mudança Climática , Jardins , Indústrias , Metais Pesados/análise , Museus , Nitrogênio
17.
BMC Bioinformatics ; 19(1): 122, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618319

RESUMO

BACKGROUND: Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats. RESULTS: We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies. CONCLUSIONS: nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.


Assuntos
Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ploidias , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos , Software
18.
PLoS Genet ; 14(2): e1007155, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29432421

RESUMO

By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.


Assuntos
Genoma de Planta , Taxa de Mutação , Mutação/fisiologia , Desenvolvimento Vegetal/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cruzamentos Genéticos , Evolução Molecular Direcionada , Evolução Molecular , Fluxo Gênico/fisiologia , Espécies Introduzidas , Fenótipo , Filogenia , Plantas Daninhas/genética , Plantas Daninhas/crescimento & desenvolvimento , Seleção Genética , Análise de Sequência de DNA
19.
Nat Ecol Evol ; 2(2): 352-358, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255303

RESUMO

As Earth is currently experiencing dramatic climate change, it is of critical interest to understand how species will respond to it. The chance of a species withstanding climate change is likely to depend on the diversity within the species and, particularly, whether there are sub-populations that are already adapted to extreme environments. However, most predictive studies ignore that species comprise genetically diverse individuals. We have identified genetic variants in Arabidopsis thaliana that are associated with survival of an extreme drought event-a major consequence of global warming. Subsequently, we determined how these variants are distributed across the native range of the species. Genetic alleles conferring higher drought survival showed signatures of polygenic adaptation and were more frequently found in Mediterranean and Scandinavian regions. Using geo-environmental models, we predicted that Central European, but not Mediterranean, populations might lag behind in adaptation by the end of the twenty-first century. Further analyses showed that a population decline could nevertheless be compensated by natural selection acting efficiently over standing variation or by migration of adapted individuals from populations at the margins of the species' distribution. These findings highlight the importance of within-species genetic heterogeneity in facilitating an evolutionary response to a changing climate.


Assuntos
Adaptação Biológica , Arabidopsis/crescimento & desenvolvimento , Mudança Climática , Secas , Variação Genética , Genoma de Planta , Evolução Biológica , Evolução Molecular , Estudo de Associação Genômica Ampla , Modelos Biológicos
20.
Science ; 357(6350): 512-515, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774930

RESUMO

By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.


Assuntos
Aclimatação/genética , Zea mays/genética , Zea mays/fisiologia , Temperatura Baixa , Flores/genética , Flores/fisiologia , Genoma de Planta , Genômica , Herança Multifatorial , América do Norte , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...